Analysis and calibration of the gyro bias caused by geomagnetic field in a dual-axis rotational inertial navigation system

نویسندگان

  • Yang
  • Song
  • Liu
چکیده

A rotational inertial navigation system (RINS) has been wildly used in long term marine navigation. In a dual-axis RINS, with all constant biases averaged out, the errors which can not be averaged out become the main error source. In this paper, the gyro geomagnetic biases of a dual-axis RINS are modelled, analysed and calibrated. The gyro geomagnetic biases are proved unable to be averaged out, but can be modulated to be a constant value in the navigation frame. A slope error term of longitude error is found to be caused by gyro geomagnetic biases in north and upward directions, which increases linearly with time and is remarkable in long term navigation. Thus, a calibration method based on least square regression is proposed to compensate the slope error term. Laboratory and sailing experimental results show that the divergence speed of longitude error can be effectively slowed down by the compensation of gyro geomagnetic biases. In long term independent navigation, the position accuracy of dual-axis RINS is improved about 50% by the calibration method proposed in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accurate Calibration Method Based on Velocity in a Rotational Inertial Navigation System

Rotation modulation is an effective method to enhance the accuracy of an inertial navigation system (INS) by modulating the gyroscope drifts and accelerometer bias errors into periodically varying components. The typical RINS drives the inertial measurement unit (IMU) rotation along the vertical axis and the horizontal sensors' errors are modulated, however, the azimuth angle error is closely r...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Increased Error Observability of an Inertial Pedestrian Navigation System by Rotating IMU

Indoor pedestrian navigation suffers from the unavailability of useful GNSS signals for navigation. Often a low-cost non-GNSS inertial sensor is used to navigate indoors. However, using only a low-cost inertial sensor for the system degrades its performance due to the low observability of errors affecting such low-cost sensors. Of particular concern is the heading drift error, caused primarily ...

متن کامل

Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy

Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...

متن کامل

Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro

A rotary inertial navigation system requires higher calibration accuracy of some error parameters owing to rotation. Conventional multiposition and rotation calibration methods are limited, for they do not consider sensors’ actual operating condition. In order to achieve these parameters’ values as closely as possible to their true values in application, their influence on navigation is analyze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016